What unique packages do you use? There are more than 5,000 packages uploaded to CRAN. Because the objects of R users is unique, the packages which each R users might be different. Thus I compare all my installed packages to Rstudio popular 200 packages in 2013.
Here's the result.
# All my installed packages
res <- data.frame(name = row.names(installed.packages()), installed.packages(),
stringsAsFactors = FALSE)
# All my installed packages remove base pakcges
res <- subset(res, !(Priority %in% c("base")))
packageRanking2013 <- read.csv("http://dl.dropboxusercontent.com/u/956851/RStudio_CRAN_data.csv",
as.is = TRUE, encoding = "UTF-8")
range_rank <- 200
res_diff <- setdiff(res$name, as.character(packageRanking2013$package)[seq_len(range_rank)])
cat("The number of my installed packages are", length(res$name))
## The number of my installed packages are 122
cat("The number of unique packages are", length(res_diff), "(", round(length(res_diff) *
100/length(res$name), 1), "%)")
## The number of unique packages are 50 ( 41 %)
Unique packages are as follows:
sort(res_diff)
## [1] "archetypes" "assertthat" "audio"
## [4] "base64enc" "BH" "bigrquery"
## [7] "bit64" "brew" "clickme"
## [10] "codetools" "d3Network" "dplyr"
## [13] "extrafont" "extrafontdb" "ggvis"
## [16] "googleVis" "hflights" "highr"
## [19] "jsonlite" "knitrBootstrap" "Lahman"
## [22] "lambda.r" "magrittr" "manipulate"
## [25] "microbenchmark" "minqa" "nnls"
## [28] "PerformanceAnalytics" "pingr" "pings"
## [31] "profr" "proftools" "rCharts"
## [34] "relenium" "Rfacebook" "rMaps"
## [37] "RMeCab" "Rook" "RPostgreSQL"
## [40] "rstudio" "Rttf2pt1" "seleniumJars"
## [43] "slideshare" "slidify" "slidifyLibraries"
## [46] "tableone" "twitteR" "vadr"
## [49] "yaml" "yeah"
If you want to set the period of package download, the code below might be helpful.
library(installr)
library(dplyr)
RStudio_CRAN_data_folder <- download_RStudio_CRAN_data(START = "2013-01-01",
END = "2013-12-31")
RStudio_CRAN_data <- read_RStudio_CRAN_data(RStudio_CRAN_data_folder)
RStudio_CRAN_data <- format_RStudio_CRAN_data(my_RStudio_CRAN_data)
RStudio_CRAN_data <- subset(my_RStudio_CRAN_data, !is.na(package))
packageRanking2013 <- RStudio_CRAN_data %.% filter(!is.na(package)) %.% group_by(package) %.%
summarise(count = n()) %.% arrange(desc(count))
write.csv(packageRanking2013, "RStudio_CRAN_data.csv", row.names = FALSE)
Reference
http://www.r-statistics.com/2013/06/top-100-r-packages-for-2013-jan-may/
No comments:
Post a Comment